
Singly Linked List

A linked list is a way to store a collection of elements. Like an array these can be character or integers.

Each element in a linked list is stored in the form of a node.

Node:

A node is a collection of two sub-elements or parts. A data part that stores the element and a next part

that stores the link to the next node.

Linked List:

A linked list is formed when many such nodes are linked together to form a chain. Each node points to the

next node present in the order. The first node is always used as a reference to traverse the list and is called

HEAD. The last node points to NULL.

Declaring a Linked list :

In C language, a linked list can be implemented using structure and pointers .

struct LinkedList

{

 int data;

 struct LinkedList *next;

 };

The above definition is used to create every node in the list. The data field stores the element and the

next is a pointer to store the address of the next node.

 In place of a data type, struct LinkedList is written before next. That's because its a self-referencing

pointer. It means a pointer that points to whatever it is a part of. Here next is a part of a node and it will

point to the next node.

Creating a Node:

typedef struct LinkedList *node; //Define node as pointer of data type struct LinkedList

node createNode()

{

 node temp; // declare a node

 temp = (node)malloc(sizeof(struct LinkedList)); // allocate memory using malloc()

 temp->next = NULL;// make next point to NULL

 return temp;//return the new node

}

typedef is used to define a data type in C.

malloc() is used to dynamically allocate a single block of memory in C, it is available in the header file

stdlib.h.

sizeof() is used to determine size in bytes of an element in C. Here it is used to determine size of each

node and sent as a parameter to malloc.

The above code will create a node with data as value and next pointing to NULL.

Adding a node to the linked list:

node addNode(node head, int value)

{

 node temp,p; // declare two nodes temp and p

 temp = createNode(); //createNode will return a new node with data = value and next pointing to

NULL.

 temp->data = value; // add element's value to data part of node

 if(head == NULL)

 {

 head = temp; //when linked list is empty

 }

 else

 {

 p = head; //assign head to p

 while(p->next != NULL)

 {

 p = p->next; //traverse the list until p is the last node.The last node always points to NULL.

 }

 p->next = temp;//Point the previous last node to the new node created.

 }

 return head;

}

Here the new node will always be added after the last node. This is known as inserting a node at the

rear end.

 This type of linked list is known as simple or singly linked list. A simple linked list can be

traversed in only one direction from head to the last node.

The last node is checked by the condition :

p->next = NULL;

Here (->) is used to access next sub element of node p. NULL denotes no node exists after the current

node , i.e. its the end of the list.

Traversing the list:

The linked list can be traversed in a while loop by using the head node as a starting reference:

node p;

p = head;

while(p != NULL)

{

 p = p->next;

}

	Singly Linked List

